Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Mol Immunol ; 20(4): 351-364, 2023 04.
Article in English | MEDLINE | ID: covidwho-2287148

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.


Subject(s)
COVID-19 , Receptors, Chimeric Antigen , Humans , SARS-CoV-2/metabolism , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Caspofungin , Felodipine , Cytokine Release Syndrome/drug therapy , Inflammation , Cytokines/metabolism
2.
Foods ; 11(6)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1742390

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, is known to be transmitted by respiratory droplets and aerosols. Since the virus is shed at high concentrations in respiratory secretions and saliva, SARS-CoV-2 would also be expected to be transmitted through activities that involve the transfer of saliva from one individual to another, such as kissing or sharing beverages. To assess the survival of infectious SARS-CoV-2 in common beverages, we quantified infectious virus by plaque assays one hour after inoculation into 18 non-alcoholic and 16 alcoholic beverages, plus saliva, and also 7 days later for 5 of these beverages. SARS-CoV-2 remains infectious with minimal reductions in several common beverages, including milk and beer. However, cocoa, coffee, tea, fruit juices, and wine contain antiviral compounds that inactivate SARS-CoV-2. Although hard liquors containing 40% alcohol immediately inactivate SARS-CoV-2, mixing with non-alcoholic beverages reduces the antiviral effects. In summary, SARS-CoV-2 can be recovered from commonly consumed beverages in a beverage type and time-dependent manner. Although aerosol or droplet transmission remains the most likely mode of transmission, our findings combined with others suggest that beverages contaminated with SARS-CoV-2 during handling, serving, or through sharing of drinks should be considered as a potential vehicle for virus transmission.

3.
Foods ; 11(3)2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1650697

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19, has been detected on foods and food packaging and the virus can infect oral cavity and intestinal cells, suggesting that infection could potentially occur following ingestion of virus-contaminated foods. To determine the relative risk of infection from different types of foods, we assessed survival of SARS-CoV-2 on refrigerated ready-to-eat deli items, fresh produce, and meats (including seafood). Deli items and meats with high protein, fat, and moisture maintained infectivity of SARS-CoV-2 for up to 21 days. However, processed meat, such as salami, and some fresh produce exhibited antiviral effects. SARS-CoV-2 also remained infectious in ground beef cooked rare or medium, but not well-done. Although infectious SARS-CoV-2 was inactivated on the foods over time, viral RNA was not degraded in similar trends, regardless of food type; thus, PCR-based assays for detection of pathogens on foods only indicate the presence of viral RNA, but do not correlate with presence or quantity of infectious virus. The survival and high recovery of SARS-CoV-2 on certain foods support the possibility that food contaminated with SARS-CoV-2 could potentially be a source of infection, highlighting the importance of proper food handling and cooking to inactivate any contaminating virus prior to consumption.

4.
Foods ; 10(5)2021 May 04.
Article in English | MEDLINE | ID: covidwho-1223981

ABSTRACT

Outbreaks of coronavirus infectious disease 2019 (COVID-19) in meat processing plants and media reports of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection on foods have raised concerns of a public health risk from contaminated foods. We used herpes simplex virus 1, a non-Biosafety Level 3 (non-BSL3) enveloped virus, as a surrogate to develop and validate methods before assessing the survival of infectious SARS-CoV-2 on foods. Several food types, including chicken, seafood, and produce, were held at 4 °C and assessed for infectious virus survival (herpes simplex virus 1 (HSV-1) and SARS-CoV-2) at 0 h, 1 h, and 24 h post-inoculation (hpi) by plaque assay. At all three time points, recovery of SARS-CoV-2 was similar from chicken, salmon, shrimp, and spinach, ranging from 3.4 to 4.3 log PFU/mL. However, initial (0 h) virus recovery from apples and mushrooms was significantly lower than that from poultry and seafood, and infectious virus decreased over time, with recovery from mushrooms becoming undetectable by 24 hpi. Comparing infectious virus titers with viral genome copies confirmed that PCR-based tests only indicate presence of viral nucleic acid, which does not necessarily correlate with the quantity of infectious virus. The survival and high recovery of SARS-CoV-2 on certain foods highlight the importance of safe food handling practices in mitigating any public health concerns related to potentially contaminated foods.

5.
Nutrition ; 90: 111226, 2021 10.
Article in English | MEDLINE | ID: covidwho-1118606

ABSTRACT

OBJECTIVE: The 2019 novel coronavirus disease (COVID-19) is threatening global health and is especially pronounced in patients with chronic metabolic syndromes. Meanwhile, a significant proportion of patients present with digestive symptoms since angiotensin-converting enzyme 2 (ACE2), which is the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the intestine. The aim of this study was to evaluate the effects of a high-fat diet (HFD) and a maternal HFD on the intestinal ACE2 levels in adults and neonates. METHODS: We examined intestinal ACE2 protein levels in mice with diet-induced obesity (DIO) and neonatal mice exposed to a maternal HFD. We also investigated Ace2 mRNA expression in intestinal macrophages. RESULTS: Intestinal ACE2 protein levels were increased in DIO mice but decreased in offspring exposed to a maternal HFD compared with chow-fed controls. Ace2 mRNA expression in intestinal macrophages was detected and downregulated in DIO mice. Additionally, higher intestinal ACE2 protein levels were observed in neonates than in adult mice. CONCLUSIONS: The influence of an HFD on intestinal ACE2 protein levels is opposite in adults and neonates. Macrophages might also be involved in SARS-CoV-2 intestinal infection. These findings provide some clues for the outcomes of patients with COVID-19 with metabolic syndromes.


Subject(s)
COVID-19 , Diet, High-Fat , Angiotensin-Converting Enzyme 2 , Animals , Diet, High-Fat/adverse effects , Humans , Intestines , Mice , Obesity/etiology , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL